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T
he ability of harvesting light and effi-
ciently concentrating its energy into a
deep subwavelength volume is highly

desired for many applications, such as fluo-
rescence and photoluminescence,1,2 super-
resolution imaging,3,4 Raman scattering spec-
troscopy,5 single-molecule detection,6,7 and
nonlinear effecton thenanoscale.8�10 Surface
plasmons (SPs)11�16 have made these appli-
cations possible through a strong interaction
between the incident light and free electrons
inmetals. Critical to these goals is an ability to
fully characterize and model the plasmonic
properties of metallic nanostructures. With a
tight control over the nanostructures in
terms of size and shape, light can be effec-
tively localized down to the nanometer-
length scale and manipulated with unpre-
cedented accuracy.17�34 From traditional
concepts, it is usually believed that a me-
tallic structure should have a large physical
size (as compared to the wavelength) to
allow for a broadband light-harvesting process
andananoparticle offinite sizeusually sustains
SP resonances at discrete, rather than contin-
uous frequencies. However, there are excep-
tions to these rules. Recent theoretical studies
based on transformation optics35,36 have
shown that a finite nanostructure with sharp
edges/corners behaves like an infinite plas-
monic system. Such sharp geometrical fea-
tures act as singularities for SPs, causing them
to propagate toward the sharp points, slow-
ing down as they progress. Consequently,
the resonance spectrum becomes continu-
ous as light energy builds up around the
singularities.37�42

In practice, however, such perfectly sharp
geometrical boundaries are unlikely to be
realized. Hence, the control of the optical
responses of more general blunt plasmonic
structures requires a rigorous theory able to

understand the underlying physical mech-

anisms. In a recent study, we have proposed

an analytical approach to study plasmonic

nanostructures containing blunt tips.43 A

direct consequence of the edge rounding

is the quantization of all the SP modes,

which will blue-shift toward the surface

plasmon frequency when the edge/corner
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ABSTRACT

The sharpness of corners/edges can have a large effect on the optical responses of metallic

nanostructures. Here we deploy the theory of transformation optics to analytically investigate a

variety of blunt plasmonic structures, including overlapping nanowire dimers and crescent-

shaped nanocylinders. These systems are shown to support several discrete optical modes, whose

energy and line width can be controlled by tuning the nanoparticle geometry. In particular, the

necessary conditions are highlighted respectively for the broadband light absorption effect and

the invisibility dips that appear in the radiative spectrum. More detailed discussions are provided

especially with respect to the structures with asymmetric edge rounding. These structures can

support additional subradiant modes, whose interference with the neighboring dipolar modes

results in a rapid change of the scattering cross-section, similar to the phenomenon observed in

plasmonic Fano resonances. Finite element numerical calculations are also performed to validate

the analytical predictions. The physical insights into blunt nanostructures presented in this work

may be of great interest for the design of broadband light-harvesting devices, invisible and

noninvasive biosensors, and slowing-light devices.

KEYWORDS: plasmonics . blunt nanostructures . transformation optics .
broadband light harvesting . Fano resonance
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bluntness increases. Nonetheless, a properly designed
nanoparticle, such as the two-dimensional (2D) nano-
crescent, is still found to exhibit a relatively broadband
absorption cross-section which is nearly insensitive to
the tip bluntness. This broadband behavior can be
explained by the overlap of all the resonance bands
due to the hybridization of SPs at the crescent tips. In
fact, the general strategy reported in ref 43 is not
restricted to the crescent structure. By applying appro-
priate conformal mappings to different canonical plas-
monic systems, we can investigate a large number of
complex nanostructures with blunt edges/corners, and

hence inversely design their optical properties accord-
ing to the requirement of practical applications.
In this article, the general transformation strategy is

applied to a broad variety of plasmonic systems. We
start with a pair of overlapping nanowires with blunt
corners, as shown in Figure 1b. General analytical
formulas for the absorption and scattering cross sec-
tions as well as the local electric field enhancements
are obtained within and beyond the quasi-static limit.
Considering a bluntness diameter of 0.5 nm as the
limit for neglecting the quantum mechanic effect,44,45

the nanowire dimer can induce a maximum field

Figure 1. (a) 2D periodic plasmonic cavities support surface plasmon resonances that can be excited by an array of line
dipoles (red arrows). The line dipole array is alignedalong the y-axis, with a pitch of 2π. (b) The transformedgeometry consists
of two overlapping nanowires with blunt corners at the touching point. The source of the line dipole array is mapped into a
uniform electric field.
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enhancement larger than 100. Our theoretical results
also suggest that the extinction properties of the
structure are directly related to the distance between
the two geometrical corners (i.e., the parameter a

shown in Figure 1b). A nanowire dimer with a larger
distance between the two corners is more robust to
edge rounding, but supports less SP modes, and vice
versa. In addition, we find that the superposition of two
neighboring bright modes results in an enhancement
of absorption in the near-field, and a suppression of
scattering in the far-field. Consequently, a so-called
invisibility dip46,47 appears in the radiative spectrum,
where the absorption cross-section is about 1 order of
magnitude larger than the scattering cross-section.
In the second part of this paper, we extend our study

to asymmetrically blunt plasmonic nanostructures (i.e.,
the nanowire dimer containing two asymmetric cor-
ners and the 2D crescent with asymmetrically blunt
claws). The theoretical calculationbasedontransformation
optics shows that these structures can support a dark
mode resonance characterized by a very sharp dip in
the extinction spectrum. At this dip, energy is trapped
at the sharper corner of the structure, similar to
what happens in the plasmonic analogue of Fano
resonance.48�55 However, different from the plasmo-
nic Fano resonance, the excitation of the dark mode
does not result from the coupling to an adjacent bright
mode, but is due to the interference between the SP
resonances supported by the structure. To further
understand the physical mechanism behind this phe-
nomenon, the crescent-shaped nanostructures are
investigated in detail. We find that, to observe this Fano-
like interference, the structure must be mirror-symmetric
in one direction, while strongly asymmetric in the per-
pendicular direction. Numerical simulations are per-
formed to validate our analytical studies, and remark-
able agreements are found for a structure dimension of
up to 100 nm.

Transformation of the Geometry. In this section, the
general transformation strategy is exposed, which will
form the basis of the following discussion. This strategy
can be explained through the example shown in
Figure 1. A pair of overlapping nanowires containing
two blunt corners (Figure 1b) can be related to an array
of 2D metallic cavities (Figure 1a) through the follow-
ing transformation:

z0 ¼ a

2
coth

z

2

� �
(1)

where z = xþ iy and z0 = x0 þ iy0 are the usual complex
number notation in the original and transformed
frames, respectively; the parameter a stands for the
distance between the two corners of the nanowire
dimer, which we will refer to as the overlapping
distance in the following part of this paper. The other
geometrical parameters in Figure 1b, such as the

nanowire radii R1 and R2, and the total structure di-
mension D can be expressed as

R1 ¼ a

2sin(θ � β)
(2)

R2 ¼ a

2sin β
(3)

D ¼ a

2
cot

θ

2
þ cot

θ � β

2

� �" #
(4)

Note that the transformation associated with periodic
infinitely longmetallic slabs has been widely discussed
in refs 41, 56, and 57. In those cases, infinity in the
original coordinate frame is mapped to the perfectly
sharp geometrical boundaries that act as energy sinks
for the SP modes. As a result, the transformed nano-
structures can induce extremely large field enhance-
ments and exhibit a continuous absorption spectrum
over a broad frequency band. In this case, however, the
perfectly sharp corners at the overlapping parts of the
nanowires are turned blunt (see Figure 1b). Accord-
ingly in the original coordinate frame, the thin di-
electric films between the metal slabs are truncated
on both sides, as shown in Figure 1a. In other words,
the nanowire dimer is equivalent to an array of finite
plasmonic cavities. The distance between the origin
and the truncated points determines the bluntness
radii b1 and b2 of the two corners:

b1(2) ¼ (4Del1(2) sin β)

= (el1(2) � 1)[el1(2) (1 � sin β) � (1þ sin β)] cot
β

2
þ cot

θ � β

2

� � !

ð5Þ
The above equation indicates that the farther we
truncate the dielectrics, the sharper the two corners
are.

The transformation of electromagnetic sources is
also illustrated in Figure 1. In the initial space (i.e., x�y

frame), the source is an array of line dipoles, each
element of which has a dipole moment p = x̂px þ ŷpy
(where x̂ and ŷ are the unit vectors corresponding to
the x and y directions). Under the conformal mapping,
the line dipole array is transformed into a uniform
electric field:

E0
0 ¼ 1

2πε0a
(x̂px � ŷpy) (6)

When the total dimension of the nanowire pair is much
smaller than the incoming wavelength λ, the uniform
electric field can be considered as an incident plane
wave, and the SP modes are well described in the
quasi-static approximation. In this case, the magnetic
and electric fields are decoupled, and the latter can
be related to an electrostatic potential that fulfills
Laplace's equation.58 Under the 2D conformal mapping,
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the dielectric properties of the nanostructure remain
unchanged for P-polarized wave, and the electrostatic
potential is preserved:

φ(x, y) ¼ φ0(x, 0y0) (7)

The electric field in the transformed x0�y0 coordinate
frame can then be obtained:

E
0 ¼ �x̂ Dφ

0

Dx0
� ŷ

Dφ0

Dy0
(8)

Thus, thebluntoverlappingnanowires shown inFigure1b
can be studied analytically by solving the problem of
periodic plasmonic cavities shown in Figure 1a.

Quasi-static Solution. This section summarizes the solu-
tion to the nanowire dimer problem in the quasi-static
limit. Detailed derivations are provided in the Methods
section. In the first step, we rewrite the electrostatic
potential associated with the line dipole source through
a Fourier transform, and study the SP modes supported
by the periodic plasmonic cavities in the k-space. Then,
by applying an inverse Fourier transform to the k-space
solution, the induced potential in the real space can be
obtained (eqs 30 and 35), which in turn gives the electric
fields in the slab geometry (eqs 40�43). Finally, the
extinction cross-section σe and scattering cross-section
σs of the nanowire dimer can be deduced from the
backscattered field at the dipole position:

σx
e ¼ � 4k0a2

(τ1þτ2)
2 Imfξxxg,

σy
e ¼ � 4k0a2

(τ1þτ2)
2 Imfξyyg

(9)

σx
s ¼ 2k30a

4

(τ1þτ2)
4 (jξxx j2 þ jξxy j2),

σy
s ¼ 2k30a

4

(τ1þτ2)
4(jξyy j2 þ jξxyj2) (10)

where τ1 = l1/π, τ2 = l2/π; k0 = ω(ε0μ0)
1/2 is the wave

vector in free space; the other three coefficients ξxx, ξyy,
and ξxy are calculated as

ξxx ¼ ∑
n

nπ

2
1þ cos

2nπτ1
τ1 þ τ2

� �
((eR(γ2n3 � 1)(γ2n1 þ γ2n2 )

� 2e2Rγ2n3 þ 2(e2R � 1)γn1γ
n
2γ

n
3 þ 2)=(e2R(γn1γ

n
2 � γn3)

2

� (γn1γ
n
2γ

n
3 � 1)2)) (11)

ξyy ¼ ∑
n

nπ

2
1 � cos

2nπτ1
τ1 þ τ2

� �
((eR(γ2n3 � 1)(γ2n1 þ γ2n2 )

þ 2e2Rγ2n3 � 2(e2R � 1)γn1γ
n
2γ

n
3 � 2)=(e2R(γn1γ

n
2 � γn3)

2

� (γn1γ
n
2γ

n
3 � 1)2)) (12)

ξxy ¼ εm � 1
εm þ 1

� �
∑
n

nπ

2
sin

2nπτ1
τ1 þ τ2

� �

�(((e2nπd3=L � 1)(γn1 þ γn2)(γ
n
1 � γn2))=(e

2R(γn1γ
n
2 � γn3)

2

� (γn1γ
n
2γ

n
3 � 1)2)) (13)

where εm is the permittivity of metal, R = ln[(εm � 1)/
(εm þ 1)], γ1 = eβ/(τ1þτ2), γ2 = e(θ�β)/(τ1þτ2), γ3 =
e(2π�θ)/(τ1þτ2). Note that the extinction cross-section
(eq 9) is proportional to the square of the overlapping
distance a, while the scattering cross-section (eq 10) scales
as the fourth power of a. Under the quasi-static approx-
imation,wehavek0a,1,which indicatesσs

x,y,σe
x,y. In this

case, the absorption cross-section of the nanowire
dimer is approximately equal to the extinction cross-
section (σa

x,y = σe
x,y � σs

x,y ≈ σe
x,y).

Equations 11�13 also show that the absorption/
scattering cross-section is the sum of the contribution
from the SP modes denoted by their angular moment
n. Each mode may result in a resonance as long as the
following condition is satisfied:

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2 ¼ 0 (14)

Figure 2. Absorption cross sections σy
a normalized by the overall physical cross-section D for overlapping nanowire dimers

with different bluntness dimensions: (a) b1 = b2 = 0.05D; (b) b1 = b2 = 0.01D; (c) b1 = b2 = 0.002D. In each case, structures of two
different sizes (D=20nmandD=100nm) are considered,while theoverlappingdistance isfixed asa=R. The shaded (orange)
regions in the subfigures indentify the visible spectrum. The inset of each figure shows the schematic of the geometry
considered and the corresponding plasmonic cavity before transformation. Theoretical calculations are compared with
numerical simulations.

A
RTIC

LE



LUO ET AL. VOL. 6 ’ NO. 7 ’ 6492–6506 ’ 2012

www.acsnano.org

6496

Equation 14 implies that the resonance condition only
depends on the geometry of the nanostructure.

Solution beyond the Quasi-static Limit. The quasi-static
solution presented in the former section is only valid
when the total dimension of the nanostructure is

sufficiently small, typically D e 20 nm (considering
the visible frequency range). To extend our study
beyond this limit, we have to take into account the
radiative damping in the dimer geometry. Since dipoles
and fields exchange roles under the transformation

Figure 3. Absorption cross sections σy
a normalized by the overall physical cross-section D for overlapping nanowire dimers

with different bluntness dimensions: (a) b1 = b2 = 0.05D; (b) b1 = b2 = 0.01D; (c) b1 = b2 = 0.002D. In each case, structures of two
different sizes (D = 20 nm and D = 100 nm) are considered, while the overlapping distance is fixed as a = 0.2R. The shaded
(orange) region in each subfigure indentifies the visible spectral range. The inset of each figure shows the schematic of the
geometry considered and the corresponding plasmonic cavity before transformation. Theoretical calculations are compared
with numerical simulations.

Figure 4. (a) Normalized absorption cross-section σy
a/D as a function of frequency and the bluntness dimension of the

geometry corners. Here the overlapping distance is fixed as a = 0.2R, and the total structure dimension is set as D = 100 nm.
The blue dashed line indentifies the optimal bluntness (b = 1 nm) where the overlap of all the SP resonances results in a
relatively continuous absorption spectrum. (b) Normalized absorption cross sections σy

a/D as a function of the frequency and
the normalized overlapping distance a/R. Here the bluntness of the geometry corners is fixed at b = 1 nm, and the total structure
dimension is set as D = 100 nm.
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denoted by eq 1, the radiative damping in the trans-
formed coordinate frame can bemodeled as a fictional
absorbing dipole in the original slab frame.59 Detailed
calculations (provided in the Methods section) show
that the modified extinction and scattering cross sec-
tions take the following form:

σx
e ¼ � 4k0a2

(τ1þτ2)
2 Im

ξxx þ iη(ξxxξyy þ ξ2xy)

(1þ iηξxx)(1þ iηξyy) � (ηξxy)
2

( )

σy
e ¼ � 4k0a2

(τ1þτ2)
2 Im

ξyy þ iη(ξxxξyy þ ξ2xy)

(1þ iηξxx)(1þ iηξyy ) � (ηξxy )
2

( )

(15)

σx
s ¼ 2k30a

4

(τ1þτ2)
4

����� ξxx þ iη(ξxxξyy þ ξ2xy)

(1þ iηξxx)(1þ iηξyy) � (ηξxy)
2

�����
2

0
@

þ
����� ξxy
(1þ iηξxx)(1þ iηξyy) � (ηξxy)

2

�����
2
1
A

σy
s ¼ 2k30a

4

(τ1þτ2)
4

����� ξyy þ iη(ξxxξyy þ ξ2xy)

(1þ iηξxx )(1þ iηξyy) � (ηξxy)
2

�����
2

0
@

þ
����� ξxy
(1þ iηξxx)(1þ iηξyy) � (ηξxy)

2

�����
2
1
A (16)

Here the scaling factor η is calculated as

η ¼ 1
2

k0a

τ1 þ τ2

� �2

(17)

All the other coefficients (i.e., τ1, τ2, ξxx, ξyy, ξxy) in eqs 15
and 16 have been defined in the former section. It is
worth noticing that, when a , λ, the scaling factor
ηf 0. Equations 15 and 16 are reduced to eqs 9 and 10,
which are the quasi-static solutions. Finally, the absorp-
tion cross-section can be deduced:

σx
a ¼ σx

e � σx
s , σ

y
a ¼ σy

e � σy
s (18)

RESULTS AND DISCUSSION

In this section, we validate our analytical theory
outlined in the previous sections, by considering two
examples, that is, a pair of overlapping nanowires (with
blunt corners) and the crescent-shaped nanocylinder
(containing blunt tips). For each structure, we examine
how the geometry affects the energy and line width of
each SP resonance, and compare the theoretical results
with numerical simulations. In all the following discus-
sions, the permittivity of the nanostructure εm is taken
from experimental data for silver.60

Overlapping Nanowire Dimer with Symmetric Edge Round-
ing. We first consider the symmetric nanowire dimer;
that is, the two wires composing the dimer have the
same dimensions (R1 = R2 = R), and the bluntness radii
at the two corners are equal b1 = b2 = b.

Figure 2 shows the absorption cross sections for
three nanowire dimers with the same overlapping
distance (a = R) but different bluntness radii. In each
case, structures of two different dimensions are con-
sidered (D = 20 nm and D = 100 nm). Theoretical calcu-
lations are compared with numerical simulations, show-
ing a nice agreement. By comparing the three subfigures,
we find that this structure can only support a narrow
absorption band, which is, however, robust to edge
rounding (i.e., changing the bluntness radius b does not
have much effects on the absorption spectrum).

We next consider a symmetric nanowire dimer with
relatively small overlapping distance a = 0.2R. As
displayed in Figure 3, all the SP modes redshift when
the bluntness radius decreases, coinciding with the
experimental observation for closely encountered
nanoshells.28 Therefore, compared to the results in
Figure 2, the structure with smaller overlapping dis-
tance is more sensitive to the edge rounding. This
phenomenon can be explained by the schematic of the
geometry transformation. A large overlapping distance
of the two nanowires corresponds to a large separation
(weak hybridization) between the metallic slabs (see
the insets above Figure 2). Hence, the SP modes
supported by each slab are only slightly modified
(red-shifted) due to the weak hybridization, and are
all restricted in a frequency range close to the surface
plasmon frequency. Since all the resonance bands
overlap with each other, the truncation distance
of the dielectric slab (corresponding to the edge
rounding) can only have limited effects on the band-
width. On the contrary, a smaller overlapping distance
(such as the one shown in Figure 3) allows for large
deviation of the SP modes from surface plasmon
frequency, which is more likely to be affected by the
edge rounding.

To further determine how the geometry of the
nanostructure affects the SP resonances, we calculate
the normalized absorption cross-section σy

a/D for var-
ious bluntness dimension b and overlapping distance a.
Figure 4a represents the dependence of σy

a/D on the
frequency and the bluntness radius of geometrical
corners, which demonstrates prominent redshifts of
the SP modes as b decreases. Here, the overlapping
distance is set as a = 0.2R, the same as in Figure 3. The
blue dashed line highlights that when the bluntness
radius is 1 nm, the overlap of all the SP resonances
results in a relatively continuous absorption spectrum.
On the other hand, in Figure 4b, both the total structure
dimensionand thebluntness radius arefixed (D=100nm,
b = 1 nm), while σy

a/D is plotted as a function of the
overlapping distance and the frequency. We can
clearly find that decreasing the overlapping distance
results in an increase of the bandwidth, while the
spectrum still remains continuous. To conclude, to
achievebroadband light harvestingwithblunt touching
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nanowires, one has to keep the distance between the
two touching points as small as possible.

Now, we turn our attention to the electric fields
induced in the near-field of the nanowire dimer.
Figure 5 displays the analytical calculations at the first
two resonances with the corresponding angular
momentum n = 1 and n = 3 (from left to right). We
can see that each resonance is related to a particular
distribution of the electric field, with the maximum
field enhancement induced around the corners of the
overlapping part. Note that, different from the kissing
nanowires in which the group velocity of SPs vanishes
and energy accumulates at the touching point,40,61

light cannot be stopped at the blunt corner of
the overlapping nanowires. Instead, the SPs will be

reflected back after reaching this point, leading to the
resonant behavior of the whole system. Nevertheless,
very large field enhancements can still be achieved at
the resonant frequencies, for example, the maximum
field enhancement at the first resonance (ω = 0.73ωsp)
reaches up to 120 at the touching point.

At the end of this part, we study the scattering
properties of the nanowire dimer. We focus our dis-
cussion on the structure of 100 nmdimension shown in
Figure 3b. In this case, the bluntness radius is 1 nm,
which is already realistic in practice. Figure 6 panels a
and b compare the absorption (σy

a/D) and scattering
(σy

s/D) cross sections for this structure. We can clearly
see a sharp dip at ω = 676THz in the scattering spec-
trum, where σy

s/D is about 1 order ofmagnitude smaller

Figure 5. The imaginary part of En
0
normalized by the incident electric field E0

0
along the nanowire surface at different

frequencies; (a)ω = 0.73ωsp (the resonant frequency associatedwith themode n = 1); (b)ω = 0.92ωsp (the resonant frequency
associated with the mode n = 3). The geometrical parameters of the nanowire dimer are set as a = 0.2R, b1 = b2 = 0.01D. The
angle γ is defined in the inset of each figure.
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than σy
a/D. As explained in ref 46, this sharp dip results

from the interference between two neighboring bright
modes, n = 1 and n = 3. Note that for a symmetric
nanowire dimer, the SP modes with even angular
moment (such as n = 2) are totally dark, and therefore
cannot be excited in the far-field. Figure 6 panels c,
d, and e display the electric field and surface charge
distributions at the three frequencies corresponding to
the two bright mode resonances (n = 1 and n = 3),
and the scattering dip, respectively. The results indi-
cate that at the scattering dip, the two brightmodes in-
teract constructively in the near-field, leading to a large
field enhancement at the overlapping part even if

the SPmodes are out of resonance. On the other hand,
the interference between the bright modes is destruc-
tive in the far-field, giving rise to a weak radiative
coupling (the total dipole moment of the structure is
relatively small). In other words, at the scattering dip,
the overlapping nanowire dimer can efficiently confine
SPs at the nanoscale while scattering little light. This
property may lead to the practical implementation of
invisible or noninvasive biosensors, as has already
been pointed out in the previous study.46

Overlapping Nanowire Dimer with Asymmetric Edge Round-
ing. In this part, we address the question on how the
asymmetric edge rounding affects the optical re-
sponses of the nanostructure. The plasmonic hybrid-
ization model proposed by Peter Nordlander and
colleagues62�65 can be used to understand the com-
plex plasmonic modes of the symmetry-broken nano-
wire pair. Figure 7 explains how the plasmon modes
supported by the asymmetric nanowire dimer can be
understood as the combination of bonding and anti-
bonding plasmon modes in a symmetric nanowire
dimer and a metal slice. Here we highlight that the
antibonding mode has an even angular moment n = 2.

To quantitatively examine the optical response of the
nanowire dimer with asymmetric edge rounding, we use
the transformation method to calculate the spectrum of
the SP modes. From Figure 8a, we find that due to the
breaking of symmetry, these structures can support a
superradiantmode (corresponding to the bondingmode
resonance) at a low frequency and a subradiant mode
(corresponding to the antibondingmode resonance) at a
relatively high frequency, which agrees with the hybridi-
zation model. More interestingly, between these two

Figure 6. Normalized absorption cross-section σy
a/D (a) and

scattering cross-section σy
s/D (b) as a function of frequency

for an overlapping nanowire dimer with symmetrically
blunt corners (b1 = b2 = 0.01D). Here the overlapping distance
is set as a = 0.2R. Panels c, d, and e display the electric field
distributions associated with the dipolar mode (n = 1), the
higher order bright mode (n = 3), and the sharp dip between
these two modes in the scattering spectrum, respectively.

Figure 7. Illustration of the plasmonic hybridization arising
from the interaction between two nanoparticles. The dipo-
lar resonance of symmetrically blunt overlapping nano-
wires interacts with that of a triangular hole, giving rise to
the bonding (superradiant) and antibonding (subradiant)
modes supported by the asymmetrically blunt nanowire
dimer.

Figure 8. Normalized absorption cross-section σy
a/D (a) and

scattering cross- sectionσy
s/D (b) as a functionof frequency for

an overlapping nanowire dimer with asymmetrically blunt
corners (b1 = 0.01D and b2 = 0.002D). Here the overlapping
distance is set as a = 0.2R. Panels (c), (d), and (e) display the
electric field distributions associated with the superradiant
mode (n = 1), subradiant mode (n = 2), and Fano-like dip
(which corresponds to the superposition of modes n = 1 and
n = 2) in the scattering spectrum, respectively.
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resonant frequencies, the interference between the two
modes leads to adarkmode resonance characterizedby a
sharp and asymmetric line shape in the scattering spec-
trum, as shown inFigure8b. Figure 8panels c andddepict
the electric field distributions at the resonant frequencies
of the modes n = 1 and n = 2, respectively. The cancella-
tion of the dipole moments associated with the super-
radiant and subradiant modes results in a weak radiative
coupling at the scattering dip (see the red arrows in
Figure 8c�e). Different from the symmetric nanowire
dimer discussed in the former section, here the asymme-
trically blunt structure exhibits a nonzero quadrupole

moment at the sharp scattering dip. Figure 8e displays
the electric field and surface charge distributions at the
scattering dip, showing that the energy is trapped at the
sharper corner of the structure, similar to the phenomen-
on of a plasmonic Fano resonance,54 observed in a single
metallic disk with a missing wedge-shaped slice. How-
ever, we stress that our case is not a Fano resonance,
because the dark mode excitation does not result from
the coupling between bright and dark modes.

2D Nanocrescent with Asymmetric Edge Rounding. To
further understand the effect of asymmetric edge
rounding and reveal the physical mechanism behind

Figure 9. (a) Truncatedperiodicmetallic slabs excited by a array of line dipoles. (b) 2D nanocrescent containing twoblunt tips
illuminated by a uniform electric field. These two configurations can be related to each other through a conformal mapping
z0 = a/2 coth(z/2).
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the Fano-like interference, we consider a nanostructure
with an even less symmetric shape, that is, 2D nano-
crescents with asymmetric tip bluntness. As illustrated
in ref 43, a 2D blunt nanocrescent can be studied
by mapping it into an array of truncated metallic slabs
(see Figure 9). Under the transformation, the geome-
trical parameters are calculated by

R1 ¼ a

2 sin(βþ θ)
(19)

R2 ¼ a

2 sin β
(20)

b1(2) ¼ R2 sin β tan(θ=2)
jsinh[(l1(2) þ iβ)=2]jjsinh[(l1(2) þ iβþ iθ)=2]j

(21)

where R1 and R2 correspond to the inner and outer
radius of the crescent, respectively; b1 and b2 stand
for the bluntness radius at each tip. All the other
parameters are depicted in Figure 9. To study the
scattering/absorption property of this structure, we
derive the extinction cross sections under incident
fields of two orthogonal polarizations (Detailed der-
ivations can be found in the Method section), as
shown in Figure 10a1,b1. Figure 10 a2 and b2 corre-
spond to the field distribution at the extinction dip in
each polarization case. We notice that this structure
can also support a subradiant mode (with an even
angular moment n = 2) due to the breaking of
symmetry. However, in contrast to the case of the
overlapping nanowire dimer, the dipole moments of
the first two bright modes supported by the 2D
nanocrescent are not antiparallel, as depicted by
Figure 10 panels a3 and b3. Therefore, the dip of
the extinction spectrum does not correspond to a
dark mode since the total dipole moment in this
case is not equal to zero (see the red arrows in panels
a2 and b2).

Increasing the degree of symmetry of the structure
in the vertical direction finally makes the crescent a
flat pike-like shape (with R1 = R2) which is mirror-
symmetric, like the overlapping nanowires. In this case,
the dipole moments associated with the modes n = 1
and n = 2 become antiparallel and cancel out each other
at the scattering dip (see Figure 11d). Consequently, the
dark mode resonance appears, where light energy is
efficiently confined at the sharper tip of the nanostruc-
ture, as illustrated by Figure 11c. This indicates that the
necessary condition to observe the Fano-like interfer-
ence is for the structure to be asymmetric in one
direction, while mirror-symmetric in the perpendicular
direction.

Figure 10. (a1�a3) Asymmetrically blunt crescent under an
incident excitation with electric field polarized along the
horizontal direction; (b1�b3) same structure as panels a but
excited by a vertically polarized electric field. (a1, b1)
Normalized extinction cross sections σy

e/D; (a2, b2) electric
field distributions associated with the extinction dip; (a3,
b3) illustration of the superposition of the modes n = 1 and
n = 2. The geometrical parameters of the crescent are set as:
a = 70.7 nm, R1 = 43.7 nm, R2 = 50 nm, b1 = 0.005D, and b2 =
0.0005D.

Figure 11. Symmetric and asymmetric pike-like nanostructures under an incident excitation with the electric field parallel to
the lone axis: (a) the normalized absorption cross-section; (b) the normalized scattering cross-section; (c) the electric field
distribution associated with the scattering dip; (d) illustration of the superposition of modes n = 1, 2. The geometrical
parameters of the pike-like nanostructure are set as a = 100 nm, R1 = R2 = 637.3 nm, b1 = 0.005a, and b2 = 0.0005a.
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CONCLUSION
This article presents a general analytical strategy to

investigate plasmonic structure containing blunt
edges/corners. We have analyzed how the edge
rounding of the nanostructures can be engineered
to achieve peculiar optical response including broad-
band or selective spectral dependence of absorbed
and scattered light as well as large local electric field
enhancements. These theoretical studies provide in-
sightful understanding of the effect of geometrical
parameters on the plasmonic properties. The ability to
engineer the physical parameters of metallic nanos-
tructures and thus to maneuver their optical re-
sponses provides great promise for the development

of new devices and applications. Furthermore, theore-
tical models can predict unique plasmonic responses of
novel structures that are yet to be fabricated, motivat-
ing further synthetic work in these areas. Finally, it
should be pointed out that the retardation and quan-
tum mechanical effects are not considered in our
analytical calculations. Therefore, our transforma-
tion strategy is accurate when the bluntness size is
larger than 0.5 nm and the total structure dimension
is within the range from 10 nm to 200 nm. Out of
these size ranges, a more general quantum descrip-
tion44,45,66,67 and nonlocal constitutive relation68,69 of
metal may be necessary to further improve our ana-
lytical model.

METHODS

Overlapping Nanowires. The problem of periodic plasmonic
cavities is depicted in Figure 1a. We first tackle this problem in
the near field approximation, assuming Laplace's equation is
obeyed. Strictly speaking, the SP modes supported by the
periodic structure consist of the transverse modes (that propa-
gate along the x direction) and the longitudinal modes (that
propagate along the y direction). Since we are only interested in
the case when l1þ l2. θ, we can neglect the contribution from
the longitudinal modes, and assume that the SP excitations are
mainly due to the transversemodes. As a result, the electrostatic
potential in one period can be written as:

1
1 � e2ik(l1 þ l2)

(eikx � e�ikxþ2ikl1 )(aþ e�jkjy þ bþ e�jkjy þ b�ejkjy ),

0 < y < d1

(22)

1
1 � e2ik(l1 þ l2 )

(eikx � e�ikxþ2ikl1 )(a�ejkjy þ b�ejkjy þ bþ e�jkjy ),

� d2 < y < 0

(23)

1
1 � e2ik(l1 þ l2 )

(eikx � e�ikxþ2ikl1 )(c�ejkjy þ cþ e�jkjy ),

� (d2 þ d3) < y < �d2 (24)

where k is the wave vector of the transverse SP modes; a� and
aþ are the expansion coefficients, which can be calculated by
applying a Fourier transform to the dipole potential:

aþ ¼ py � ipx sgn(k)
2ε0

, a� ¼ �py � ipx sgn(k)
2ε0

(25)

The other four unknown coefficients b�, bþ, c�, and cþ can
be found through the boundary conditions at y = β and
y = 2π � θ þ β:

b� ¼ ((aþ e2jkj(θ � β)þR[e2jkj(2π � θ) � 1]þ a�(1 � e2jkjπ)

þ a�e2R[e2jkjπ � e2jkj(2π � θ)])=(e2R(ejkj(2π � θ) � ejkjθ)2

� (e2jkjπ � 1)2)) (26)

bþ ¼ ((a�e2jkjβþR[e2jkj(2π � θ) � 1]þ aþ (1 � e2jkjπ)

þ aþ e2R[e2jkjπ � e2jkj(2π � θ)])=(e2R(ejkj(2π � θ) � ejkjθ)2

� (e2jkjπ � 1)2)) (27)

c� ¼ 2e2jkjπ

εs þ 1
((a�(1 � e2jkjπ)þ aþ eR[e2jkj(π � β) � e2jkj(θ � β)])

=(e2R(ejkj(2π � θ) � ejkjθ)2 � (e2jkjπ � 1)2)) (28)

cþ ¼ 2
εs þ 1

((aþ (1 � e2jkjπ)þ a�eR[e2jkj(π � θþβ) � e2jkjβ])

=(e2R(ejkj(2π � θ) � ejkjθ)2 � (e2jkjπ � 1)2)) (29)

Substituting b� and bþ back into eqs 22 and 23, and applying an
inverse Fourier transform to the induced potential leads to the
solution in the real space:

φsca ¼ 1
2ε0(l1 þ l2)

∑
n

py cos
nπx

l1 þ l2
� cos

nπ(x � 2l1)
l1 þ l2

� �"

�(Γye
nπy=l1 þ l2 þΛye

�nπy=l1 þ l2 )þ px sin
nπx

l1 þ l2
þ sin

nπ(x � 2l1)
l1 þ l2

� �

�(Γxe
nπy=l1 þ l2 þΛxe

�nπy=l1 þ l2 )

#
(30)

where

Γx ¼ (eR(γ2n3 � 1)γ2n2 � e2Rγ2n3 þ (e2R � 1)γn1γ
n
2γ

n
3 þ 1)

=(e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2) (31)

Γy ¼ (eR(γ2n3 � 1)γ2n2 þ e2Rγ2n3 � (e2R � 1)γn1γ
n
2γ

n
3 � 1)

=(e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2) (32)

Λx ¼ (eR(γ2n3 � 1)γ2n1 � e2Rγ2n3 þ (e2R � 1)γn1γ
n
2γ

n
3 þ 1)

=(e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2) (33)

Λy ¼ �((eR(γ2n3 � 1)γ2n1 þ e2Rγ2n3 � (e2R � 1)γn1γ
n
2γ

n
3 � 1)

=(e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2)) (34)

Here γ1, γ2, and γ3 are constants defined after eq 13 in the
former section. Equation 30 implies that, due to the finite size of
the plasmonic cavity, the whole system only supports the SP
modes with integer spatial frequencies. It is worth pointing out
that, different from the singular nanostructures where the
induced potential was calculated by considering only the
propagating SP modes,40�42,56,57,61 the calculation here takes
into account the contribution from all the modes, including the
lossy surface waves.59
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The induced potential inside themetal slab can be obtained
in a similar manner:

φm ¼ 1
ε0(εm þ 1)(l1 þ l2)

∑
n

py cos
nπx

l1 þ l2
� cos

nπ(x � 2l1)
l1 þ l2

� ��

�(Θye
nπy=l1 þ l2 þΩye

�nπy=l1 þ l2 )þ px sin
nπx

l1 þ l2
þ sin

nπ(x � 2l1)
l1 þ l2

� �

�(Θxe
nπy=l1 þ l2 þΩxe

�nπy=l1 þ l2 )

�
(35)

where

Θx ¼ eRγn2(γ
�n
1 γn3 � γn2) � γn1γ

n
2γ

n
3 þ 1

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(36)

Θy ¼ eRγn2(γ
�n
1 γn3 � γn2)þγn1γ

n
2γ

n
3 � 1

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(37)

Ωx ¼ eRγ2n1 γn3(γ
n
3 � γn1γ

n
2) � γn1γ

n
2γ

n
3(γ

n
1γ

n
2γ

n
3 � 1)

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(38)

Ωy ¼ eRγ2n1 γn3(γ
n
1γ

n
2 � γn3) � γn1γ

n
2γ

n
3(γ

n
1γ

n
2γ

n
3 � 1)

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(39)

The electric fields in each region can then be derived by
differentiating the potential:

Escax ¼ ∑
n

nπ

2ε0(l1þl2)
2 py sin

nπx

l1 þ l2
� sin

nπ(x � 2l1)
l1 þ l2

� �"

�(Γye
nπy=l1 þ l2 þΛye

�nπy=l1 þ l2 ) � px cos
nπx

l1 þ l2
þ cos

nπ(x � 2l1)
l1 þ l2

� �

�(Γxe
nπy=l1 þ l2 þΛxe

�nπy=l1 þ l2 )

#
(40)

Escay ¼ �∑
n

nπ

2ε0(l1þl2)
2 py cos

nπx

l1 þ l2
� cos

nπ(x � 2l1)
l1 þ l2

� �
(Γye

nπy=l1 þ l2

"

�Λye
�nπy=l1 þ l2 )þ px sin

nπx

l1 þ l2
þ sin

nπ(x � 2l1)
l1 þ l2

� �

�(Γxe
nπy=l1 þ l2 �Λxe

�nπy=l1 þ l2 )

#
(41)

Emx ¼ ∑
n

nπ

ε0(εs þ 1)(l1þl2)
2 py sin

nπx

l1 þ l2
� sin

nπ(x � 2l1)
l1 þ l2

� ��

(Γye
nπy=l1 þ l2 þΛye

�nπy=l1 þ l2 )�px cos
nπx

l1 þ l2
þ cos

nπ(x � 2l1)
l1 þ l2

� �

�(Γxe
nπy=l1 þ l2 þΛxe

�nπy=l1 þ l2 )

�
(42)

Emy ¼ �∑
n

nπ

ε0(εs þ 1)(l1þl2)
2 py cos

nπx

l1 þ l2
� cos

nπ(x � 2l1)
l1 þ l2

� ��

�(Γye
nπy=l1 þ l2 �Λye

�nπy=l1 þ l2 )þ px sin
nπx

l1 þ l2
þ sin

nπ(x � 2l1)
l1 þ l2

� �

�(Γxe
nπy=l1 þ l2 �Λxe

�nπy=l1 þ l2 )

�
(43)

Extinction Cross-Section. Now we can compute the power
dissipated by each dipole in the original slab geometry. From

the expression of the scattered field eqs 40 and 41, we can
directly obtain the electric field at the dipole position:

Escax (z ¼ 0) ¼ ∑
n

nπ

2ε0(l1þl2)
2 py sin

2nπl1
l1 þ l2

� �
(Γy þΛy )

"

� px 1þ cos
2nπl1
l1 þ l2

� �
(Γx þΛx )

�
(44)

Escay (z ¼ 0) ¼ �∑
n

nπ

2ε0(l1þl2)
2 py 1 � cos

2nπl1
l1 þ l2

� �"

�(Γy �Λy )þ px sin
2nπl1
l1 þ l2

� �
(Γx �Λx )

#
(45)

Then the dissipated power can be deduced from this back-
scattered field:

Pa ¼ �ω
2
Imfp� 3 E

sca
(z ¼ 0)g

¼ � ω

2ε0(l1þl2)
2 (Imfξxxgjpx j2 þ Imfξyygjpy j2) (46)

where ω is the angular frequency; p* denotes the complex
conjugate of the dipole moment p; ξxx and ξyy are defined by
eqs 11 and 12. As energy is conserved under the transforma-
tion, eq 46 also accounts for the power absorbed by the
nanowire pair in the transformed x’-y’ coordinate frame. Thus,
normalizing Pa by the incident power flux P 0

0 = c0ε0|E00|
2/2

(where c0 is the speed of light in free space), we can derive
the extinction cross-section of the nanowire pair in the quasi-
static approximation:

σx
e ¼ Pxa

P00
¼ � 4π2ωa2

c0(l1þl2)
2 Imfξxxg,

σy
e ¼ P

y
a

P00
¼ � 4π2ωa2

c0(l1þl2)
2 Imfξyyg (47)

Injecting ω = c0k0, l1 = πτ1, and l2 = πτ2, eq 47 is reduced to
eq 9. Scattering Cross-Section. The net dipole moment of the
nanowire dimer can be deduced from the total electric field at
the origin of the slab geometry (x�y frame):

pdim ¼ 2πε0a� E
tot�

(z ¼ 0) (48)

This in turns gives the scattered field in the transformed frame:

E
0sca

(z0 f ¥) ¼ �ik20
8ε0

pdim ¼ �iπk
2
0a

4
� E

tot�
(z ¼ 0) (49)

As pointed out in previous studies,43,46 this uniform scattered field
can be related to an array of absorbing particles in the original
coordinate (x�y frame). Each particle has a dipole moment:

pabs ¼ 2πε0a� E
0sca�

(z0 f ¥) (50)

Substituting eq 49 into eq 50 yields:

pabs ¼ �iε0π
2k20a

2

2
� E

tot
(z ¼ 0) (51)

Under the quasi-static approximation, the total electric field is
approximately equal to the scattered field in the slab geometry
(Etot≈ Esca). Hence, the power dissipated by the absorbing particle
is calculated as

Ps ¼ ω

2
Imfpabs� 3 E

tot
(z ¼ 0)g

� ωε0π2k20a
2

4
(jEscax (z ¼ 0)j2 þ jEscay (z ¼ 0)j2) (52)

Substituting eqs 44 and 45 into the above equation, and renor-
malizing Ps by the incident power flux P0

0
, the scattering cross-

section of the nanowire dimer can be obtained (see eq 10).
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Radiative Damping. When the total dimension of the nano-
wire pair is larger than 20 nm, the total electric field Etot is no
longer equal to Esca. In this case, we have to recalculate Etot

using the net dipole moment p þ pabs in the original slab
geometry. Detailed algebraic operations show that the total
electric field at the dipole position takes the following form:

Etotx (z ¼ 0) ¼ � 1

ε0(l1þl2)
2 [ξxx (px þ pabsx )þ ξxy (py þ pabsy )] (53)

Etoty (z ¼ 0) ¼ � 1

ε0(l1þl2)
2 [ξyy (py þ pabsy ) � ξxy (px þ pabsx )] (54)

By substituting eq 51 into eqs 53 and 54, we can derive the total
electric field the dipole position:

Etotx (z ¼ 0) ¼ � 1

ε0(l1þl2)
2

[ξxx þ iη(ξxxξyy þ ξ2xy )]px þ ξxypy

(1þ iηξxx )(1þ iηξyy ) � (ηξxy )
2 (55)

Etoty (z ¼ 0) ¼ � 1

ε0(l1þl2)
2

[ξyy þ iη(ξxxξyy þ ξ2xy )]py � ξxypx

(1þ iηξxx )(1þ iηξyy ) � (ηξxy )
2 (56)

where η is a constant defined by eq 17. Then the power
dissipated by the emitting dipole can be deduced:

Pa ¼ ω

2
Imfp� 3 E

tot
(z ¼ 0)g ¼ � ω

2ε0(l1þl2)
2

�Im
[ξxx þ iη(ξxxξyy þ ξ2xy )]p

2
x þ [ξyy þ iη(ξxxξyy þ ξ2xy )]p

2
y

(1þ iηξxx )(1þ iηξyy ) � (iηξxy )
2

( )

(57)

Normalizing the above equation by P 0
0 gives the modified

extinction cross-section characterized by eq 15.
Themodified scattering cross-section of the nanowire dimer is

related to the power dissipated by the fictional absorbing dipole:

Ps ¼ ω

2
Imfpabs/ 3 E

tot
(z ¼ 0)g

¼ ωπ2k20a
2

4ε0(l1þl2)
2

�����[ξxx þ iD(ξxxξyy þ ξ2xy )]px þ ξxypy

(1þ iDξxx )(1þ iDξyy ) � (Dξxy )
2

�����
2

8<
:

þ
�����[ξyy þ iD(ξxxξyy þ ξ2xy )]py � ξxypx

(1þ iDξxx )(1þ iDξyy ) � (Dξxy )
2

�����
2
9=
; (58)

Renormalizing Ps by P0
0
leads to eq 16.

Crescent-Shaped Cylinder. The 2D nanocrescent with symmetric
blunt tips has already been investigated in ref 43. Following the
same procedure, the extinction and scattering cross sections of
the asymmetric crescent structure can be obtained:

σx
e ¼ �4k0 Dsin β

τ1 þ τ2

� �2

Im
ξxx þ iη(ξxxξyy þ ξ2xy )

(1þ iηξxx)(1þ iηξyy) � (ηξxy)
2

( )

σy
e ¼ �4k0 Dsin β

τ1 þ τ2

� �2

Im
ξyy þ iη(ξxxξyy þ ξ2xy )

(1þ iηξxx)(1þ iηξyy) � (ηξxy)
2

( )

(59)

σx
s ¼ 2k30

Dsin β
τ1 þ τ2

� �4
����� ξxx þ iη(ξxxξyy þ ξ2xy)

(1þ iηξxx)(1þ iηξyy) � (ηξxy )
2

�����
2

0
@

þ
����� ξxy
(1þ iηξxx)(1þ iηξyy) � (ηξxy )

2

�����
2
1
A

σy
s ¼ 2k30

Dsin β
τ1 þ τ2

� �4
����� ξyy þ iη(ξxxξyy þ ξ2xy )

(1þ iηξxx)(1þ iηξyy) � (ηξxy )
2

�����
2

2
4

þ
����� ξxy
(1þ iηξxx)(1þ iηξyy) � (ηξxy )

2

�����
2
3
5 (60)

Here τ1(2) = l1(2)/π; the coefficients ξxx, ξyy, ξxy, and η take the
following form:

ξxx ¼ ∑
n

nπ

2
1 � cos

2nπτ1
τ1 þ τ2

� �

�eR(γ2n3 � 1)(γ2n1 þ γ2n2 ) � 2e2Rγ2n3 þ 2(e2R � 1)γn1γ
n
2γ

n
3 þ 2

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(61)

ξyy ¼ ∑
n

nπ

2
1þ cos

2nπτ1
τ1 þ τ2

� �

�eR(γ2n3 � 1)(γ2n1 þ γ2n2 )þ 2e2Rγ2n3 � 2(e2R � 1)γn1γ
n
2γ

n
3 � 2

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(62)

ξxy ¼ εm � 1
εm þ 1

� �
∑
n

nπ

2
sin

2nπτ1
τ1 þ τ2

� �

� (e2nπd3=L � 1)(γn2 þ γn1)(γ
n
2 � γn1)

e2R(γn1γ
n
2 � γn3)

2 � (γn1γ
n
2γ

n
3 � 1)2

(63)

η ¼ 1
2

k0Dsinβ
τ1 þ τ2

� �2

(64)

where

γ1 ¼ eβ=(τ1 þ τ2 ) , γ2 ¼ e(2π � θ � β)=(τ1 þ τ2 ), γ3 ¼ eθ=(τ1 þ τ2)
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